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Abstract. We consider the numerical resolution of hierarchical inventory problems under global 
optimization. First we describe the model as well as the dynamical stochastic system and the impulse 
controls involved. Next we characterize the optimal cost function and we formulate the Hamilton- 
Jacobi-Bellman equations. We present a numerical scheme and a fast algorithm of resolution, with 
a result on the speed of convergence. Finally, we apply the discretization method to some examples 
where we show the usefulness of the proposed numerical method as well as the advantages of 
operating under global optimization. 
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1. I n t r o d u c t i o n  

We consider in this paper inventory problems originated when a set of N instal- 
lations, or nodes, organized according to a given hierarchy, share the distribution 
of  a product. The hierarchy relates manufacturers, wholesalers and small traders. 
For the whole system to operate optimally, a compromise must be found between 
stocking and ordering costs. As for the exterior installations, they must also face - 
and satisfy - an external stochastic demand. 

Numerical resolution of  such hierarchical inventory optimization problems may 
be focused under two main approaches: 

- Global or centralized optimization 
- Decentralization techniques 

depending whether the interest is centered around obtaining optimal controls and 
costs or around providing practical localized decision rules. When performing 
global optimization for inventory systems, the impulse controls-given by the pur- 
chasing decisions-are set by a central manager, exterior to the system. It decides 
on the ordering installations as well as the time and the amount of the order to be 
placed. As for decentralized methods, each node makes decisions independently. 
Generally such a behaviour gives rise to suboptimal policies, since fixed costs 
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Fig. 1. Arborescent chain. 

are not shared by many installations. Sometimes, however, under rather strong 
assumptions, a decentralized procedure may produce global optimal policies. This 
technique has been proposed in [4] and [5] for a serial stochastic inventory system. 
Unfortunately, such a decomposition is only possible when there are no fixed costs 
involved, a situation which appears rarely in practice. 

A broad variety of heuristical rules for decision can be found in [13], [10] and 
[6], they are decentralized techniques of simple computation but are, in general, 
not optimal. A vast review for serial and arborescent systems can be found in [4], 
[19] and [15], [18] and [3] respectively. 

Concerning decentralized techniques, it could be argued in their favor that 
solving N unidimensional problems is usually much simpler than solving the - 
probably huge - N-dimensional problem produced when applying global controls. 
While the often impractical character of global approaches is largely true for 
classical numerical techniques (see [8] and [12]), this is no longer valid for a wide 
class of problems when applying our approach. We outline a fast algorithm here 
(for more details, see [9]). Indeed, our fast algorithm turns out to be very suitable 
for treating large scale problems and obtaining global optimal policies without 
excessive computer requirements; most of the numerical results we present here 
have been computed on a PC. What is especially important then is the possibility 
of extending global optimization to more complex systems, using when necessary 
high performance computers. 

We study here single-product-systems, where the N-nodes net has an arbores- 
cent structure, with different levels or sets of nodes having the same status, but not 
necessarily the same predecessor. 

The external stochastic demand may enter the system at any level of decision. 
Each node i places orders to its unique supplier [(i) ,  for i = 2 , . . . ,  N, and the 
exterior supplies the highest installation N. In the figure, N is the supplier of nodes 
N - 1 and N - 2: N = I ( N -  1 ) = I ( N  - 2). Node N - 2 sells product to m, which 
must satisfy an external demand as well as those orders coming from nodes I and 2. 
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The purchasing decisions are made at any time and they modify instantaneously the 
state of the system z = (Zl, z2 , . . . ,  ZN), where zi represents the amount of stock 
at installation i. We are interested in the global control of stationary multi-level 
systems with state-space constraints. This means that we deal withfinite maximum 
stocking capacities, that is: the trajectories of the controlled process must stay 
within a given subset of R N. 

Our paper is organized as follows: we start with a general description of the 
problem, where we establish the main features of the model. We also describe the 
dynamical system and the controls involved. Next we study some properties of the 
optimal cost function and we formulate the associated Hamilton-Jacobi-Bellman 
system. We consider its solution via a constructive method which recursively gen- 
erates a sequence of stopping-time problems for solving an equivalent fixed-point 
problem. We present a numerical scheme and then we describe a fast algorithm 
of resolution with a result on its rate of convergence. Finally, we apply the dis- 
cretization method to some examples where we show the usefulness of the proposed 
numerical method as well as the advantages of operating under global optimization. 

2. Dynamic of the System 

2.1. GENERAL DESCRIPTION 

We state first some notation and assumptions. Nodes receiving an external demand 
are gathered in the set J := {Jl, j2 , . . .} .  Unsatisfied demands can be backlogged 
up to the maximum amount Ixjl, for every j E ,.7. At each installation i we denote 
the initial stock by z ~ by _xl its minimum capacity (negative stocks correspond to 
accumulation of unsatisfied demands), and the maximum capacity by ~i. 

We denote stocking costs by f : R N --+ R; when z E R N has a negative 
coordinate, f ( . )  represents the backlogging cost. Purchasing, i.e. ordering, costs 
are denoted by k : RN __+ R+; they represent the cost that installation N pays 
for ordering to the exterior, as well as costs related to transfers between nodes. We 
suppose there exists a positive constant k0 

k(u) > k 0 > 0  for all u > 0 ,  (1) 

this means that there exists a fixed ordering cost. For every j E ,7, we also admit 
shortage costs, ~j. They are originated when unsatisfied demands are so large that 
stock zj falls beyond x~. 

Let us now describe the dynamical system and its control. For every j E ,.7, 
the demand has a Poisson distribution, with jump rate )~j. The jump magnitude is 
a random variable, A~j E R+,  with conditional distribution given by the measure 
mj(.). We assume it is concentrated on a finite number of points, i.e., A~j may 
just take a finite number of different values. Between two consecutive orders, each 
state zj evolves as a one dimensional piecewise deterministic jump process (strictly 
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speaking, it is a piecewise constant process; we refer to [1], [14], [16], [17] and 
references therein for a similar setting of the problem). 

The demand arrives at times r e > 0 for every unidimensional process ~j (hence 
g = g(j)). The stochastic process is then 

[ o xj(o-) = zj 

where x o is an arbitrary initial point, A {ae. : = gi ( r_~ ) - ~j ( r e- ) is the jump magnitude 
and 

f "yj ifTj e [x_j,~j] : =  [ xj otherwise. 

Observe that :P is the projection onto Ix j, 2j] since the values over ~j are discarded 
by the admissible controls. 

Controls will be purchasing orders of impulsive type set at times 0 z and of 
amounts t~(.). There is no delay for delivering. The set of admissible controls A 
will be the set of policies adapted to the capacity constraints of the demanding 
nodes as well as to the available stocks of their suppliers. 

Accordingly, the corresponding trajectory x (t) is a piecewise constant function 
of t, with jumps at times r k and 8g: 

oo oo 
0 k k x (t) *J + + S ,  , = AxjX[o,t)(7" ) I/j(Og)X[o,t)( Og ) 

�9 k = l  s  

where X is the characteristic function of a set, L,(t) an admissible control and 
x ~ is any starting point. We have set Ax]  := xj (r~+)-  xj(r~-I-) .  For better 
legibility, in the sequel we extend ,7 to { 1 , 2 , . . . ,  N},  defining by zero the demand 
parameters corresponding to "interior" nodes. 

As for the expected cost associated with every decision, for an infinite horizon, 
it must include the (actualized) stocking cost as well as the ordering and shortage 
costs. This total average cost is expressed in the following formula: 

J(x,y(.)) 

where 

= E e-~Sf(x(s))ds + ~ e-~176 
3~-I,N g=l,oo 

+ + A 5)) ] 
s 1,r 

~j(xj - 7 j )  ifTj <x_j 
~j(Tj)  / 0 otherwise 

(2) 
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and a is the discount factor. 
This expected cost is decomposed in three parts: an integral cost corresponding 

to the free evolution of the system, and two impulsive costs related respectively to 
the purchasing and to the stock rupture phenomena. 

We want the system to operate optimally, the optimal cost is therefore given 
by 

V(x) := inf{J(x,~(.)) �9 v(.) �9 .4}. (3) 

2.2. CHARACTERIZATION OF THE OPTIMAL COST 

The process we have defined is a strong Markov process, hence a version of Ito's 
N 

formula holds (see [7]). Namely, for any r E Cl(ft), with ft := II[xi,2i], the 
i=1 

expected value is 

] E[r = r176 ~ Aj [r + A~j) - r 
k=l  

In order to characterize the optimal cost, we apply formally the Dynamic Pro- 
gramming Principle. We consider the cost to be paid in the interval [0, T] for any 
small T: two exclusive alternatives are possible, whether the system evolves freely 
or a control is placed. Accordingly, we obtain 

] 
E [ffoo e-atf(x(t)) dt 

V(x) = min + Ej=~,N e_c~-e_~2j(xj(7.s + A~)X(o,T)(re)e_~TV(x(T) ) 
s  

mi'n[k(,) + V(x + t~)] 

We refer to [2] for more details. 
So, similarly to what has been done in [16], the equation below leads to 

V(x) = m i n /  

f(x) + ~--~ A_~ f [V(7)j(xj + A~j))_ 
O~ j----1 

+ cj( j + Zx j)]mj(dA j) 

mi~n[k(v) + V(x + v)]. 
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f 
Now, since / V (x) mj (dA~j) = V (x) for all j ,  setting A : = ~ / ~ j ,  and A~j qj :--_ 

we obtain 

f (x)  + : [Y (P j ( x j  + qj)) + Cj(xj + qj)]mj(dqj) 
a + A  a + A  

V(x) = min '= 
, ]  

min [k(u) + V(x + u)]. 
uEAx 

(4) 

3. Equivalent Formulations for the Optimal Problem 

3.1. ASSOCIATED QUASI-VARIATIONAL INEQUALITIES 

We study here the system of inequalities associated to (4). Namely, we consider 
the following quasi-variational system: 

f(x) + 
a + A  a + A  

(QVI) w(x) <_ min f[w(Pj(xj + qj)) + ~j(xj  + qj)]rai(dqj ) 

min [k(u) + w(x + v)] 
uEA~ 

Clearly, solving (4) is equivalent to finding a particular solution of (QVI) (i.e. 
the maximum subsolution, see definition below). Moreover, as it will be shown 
in w 3.2, the solution can be computed by finding the fixed point of a non-linear 
contractive operator. 

We introduce now some notation. We denote the espace of continuous real- 
valued functions from Q by ~) := C(f~). We define the linear operator I : ]; --~ )? 
by 

1 
( I (u ) ) (x ) "  - a + A f ( x ) +  

N Aj f [u(7~j(xj + A~j)) + 62j(xj + A~j)lmj(dA~j). 
j=l a + A  

For every r in ]d, we define a : V ---+ V as the maximum subsolution of the 
stopping-time problem: 

u _< W e ( u ) : =  min{r I (u )} .  (5) 

We call a subsolution any u E Y such that u <_ We(u) (respectively, u is a 
super solution when u > We(u)). 

LEMMA 1. We defined in (5) is monotone and contractive, with contraction factor 
A 'r/:= a--4-S < 1. 
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Proof Let us first prove that We(.)  is contractive: 

w ,  v E v wr ,II - vii. 

Given a point x E f~, we proceed by inspection of the different possibilities for 
w+(x). 

When (Wr = 4(x), we have 

(Wf(u )  - Wr <__ 4(x)  - 4 (x)  = O, (6) 

since, by definition, (Wr <_ 4(x) ,  for all x. In the other case, when 
(Wr = (I(v))(x),usingthistime We(u)  _< I (u) ,  we get 

(We(u)  - We(v))  (x) _< (I(u) - I(v)) (x) 
_< EY=, ~ A  f [ (u - v ) ( 'P j ( x j  + ACj))md(dACj) (7 ) 

< EY=, II - vii. 

From (6) and (7) we obtain We(u)  - We(v)  _< - vii. 
A similar inequality for We(v)  - We(u)  can be shown, mutatis mutandis. 
Let u, v E Y such that u < v. We consider as before the two possible values for 

(Wr162 (x ) - (Wr  (x) < 0 fora l lx  E 
fL We conclude We(.)  is non decreasing. [] 

THEOREM 2. Let a ( 4 )  E V be the unique solution of the fixed-point problem 
u = We(u).  Then 
(i) a(4)  solves (5), 

(ii) a( 4 ) is the maximum subsolution and the minimum supersolution of(5), 
(iii) a(.) is increasing. 

Proof. (i) is straightforward. Let us prove (ii). Because of Lemma 1, we have 
We(.)  has a unique fixed-point a (4 ) .  This fixed-point can be computed recursive- 
ly: 

a ( 4 )  = lim [ W e ( u ) ]  m , (8) 
m---+oo 

for u any initial point in V. 
We already know a ( r  is a subsolution. Let u E V be another subsolution: u _< 

We(u) .  Then the monotonicity of We(.)  implies We(u)  < [We(u)]2; recursively, 
u <_ [We(u)] m <_ [We(u)] m+l for any m. Passing to the limit, (8) implies that 
a ( 4 )  is the maximum subsolution. A symmetric argument can be used for proving 
a ( 4 )  is also the minimum supersolufion. 

We consider now (iii). Observe that We(.)  is increasing in 4: for 41 _< 42 E F, 
we have Wr ) = min{41, I(u)} <_ min{42, I(u)} = Wcz(u ). Passing to the 
limit again, we obtain the desired inequality: 

r  = lim [Wr m <_ lim [Wr m = a ( r  [] 
m ---:* O 0  m - - - ~ o o  
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3.2. THE FIXED-POINT PROBLEM 

3.2.1. General scheme 

We consider now A4 : F --+ V defined by 

vx e a (Mu)(x):= ~i~(k(.) + ~(x + . ) ) ,  

and we analize its composition with a, namely the operator M := a o .Ad. We 
will show that M has a unique fixed-point which is the maximum subsolution of 
(QVI ) .  Finally we present an algorithm for finding the solution and we establish 
its rate of convergence; similar to the bound obtained by Hanouzet-Joly in [11]. 
We always suppose k(.) has a positive inferior bound (recall (1)) and that f ,  ~j for 
j E ,7, are Lipschitz continuous. 

We start with some properties of M which will be useful in the sequel. 

THEOREM 3. With the notation above, the following properties hold: 
(i) M �9 l) --, F is increasing. 

(ii) M is concave : Vu, v E V and for any 0 E [0, 1], 

OM(u) + (1 - O)M(v) <_ M(au + (1 - O)v) 

(iii) For every u E V, take 

{ } K(u) > max Ilull, ~ + A Ilfll + ~,XjlICJlI) _> 0 (9) 
3 

and 
k0 1 IIflI+Ej~jlI~Jll / 

5(u) := min 1, 2 K '  2 2 a K  E]0, 1] . (lO) 
J 

Then there exist u_u_, fz in 12 such that u <_ u <_ ft and 
+ ~5(~ - ~) _< M(u_) (11) 

Vv <_ fz M(v )  < ~, (12) 
throughout the inequalities are considered in a pointwise sense. 

Proof. (i): Let vl,v2 E V such that Vl < v2; by definition, .M(Vl) <_ .A4(v2). 
From Theorem 2(iii) a(.) is increasing, hence so is M. (ii): We prove first that 
A4(.) is concave. For this, take u, v E ~ and 0 E [0, 1]. We have 

.M (Ou + (1 - O)v) (x) = min{k(v) + (Ou + (1 - O)v) (x + v)} 

= k(tT,) + (0u + (1 - 0)v)(x + f,) 

= 0 [k(~) + ~(x + ~)] + (1 - 0) [k(~)  + v(x + ~)] 
>_ O ( . M ( u ) ) ( x ) + ( 1 - O ) ( . M ( v ) ) ( x ) ,  

where ~3 denotes the control realizing the minimum in (8). We analyze now the 
different values M can take. 



GLOBAL OPTIMIZATION OF ARBORESCENT MULTILEVEL INVENTORY SYSTEMS 277 

When M(u) < 3,4 (u) and M ( v )  _< .M (v), the convex sum of M(u) and M(v)  
gives 

OM(u) + (1 - O)M(v) <_ O.Ad(u) + (1 - O).M(v) <_ Ad(Ou + (1 - O)v).(13) 

Whereas for the case M ( u ) < I ( M ( u ) ) and M ( v ) <_ I ( M ( v ) ), again from their 
convex sum we get 

OM(u) + (1 - O)M(v) < OI(M(u)) + (1 - O)I(M(v)).  (14) 

Combine  now (13) and (14) with the linearity of  I ( . )  to conclude that OM(u) + 
(1 - O)M(v) is a subsolution of  (5). Now, set ~b := jtd (Ou + (1 - O)v) and apply 
Theorem 2(i i) :  

OM(u) + (1 - O ) M ( v )  <_ cr(~b) = a(.M(Ou + (1 - O)v)) = M(Ou + (1 -O)v ) .  

(iii) For any u E 12, it ho lds- [ ]u l ]  _< u < ]lu]l. Then with g := If(u)defined 
by (9), take u = - K  and ~ _= K.  Clearly, u and g E 1) and 

u < u < f i .  

For proving (11), observe first that 8 := (5(u) gives 

_u + ~5(R - u) = (2~5 - 1)K.  (15) 

It also holds 

/r  . u_. + ~(~ - u_) = - K  + 52K <_ - K  + ~f~2I{ = - K  + ko <_ u(x + u) + k(u) , 

for all x E f~ and for all u E .4; in particular for b such that k(f,) + u_.(z + b) = 
.M( 'u ) (x ) ,  it follows u_u_ + ~5(~ - u_) _< .M(u) .  We will show that u__ + (5(g - u_u_) is a 
subsolution: 

+ - _< w + ( u  + - 

with r := .h4(u). Since cr(~b) = M(u_ + 6(~ - u__)) is the maximum subsolution of  
(5), we will get u + / f ( ~  - u)  _< M ( u ) .  

For this, recall that 

1 
(2~ - 1 )K  < (llf]l + ~ II~jl]) (16) 

a + A  
J 
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Let us consider 1(.): 

> (1 + r/)(26 - 1)K 

= (1 + ~){u + (5(~ - u)} 

Since 1 + ~ > 1, we are done. 
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= ~ f + E j  ~ f {u_ q- (5(g - u_) 
+~j(,,~(xj + A~j))}m(dzX~j) 

>- ~--~-h f qT. ~+--~-K {u- + (5(~ - _u)} 
+ E j  a-~A~j(7)j(xj + A~j))m(dA~j) 

>- -~--~A Ilfll + .(u_u_ + (5(~ - u_)} 

- E j  ~@x'A II'bll 

_ 1 f r/(2~5 1)K - -~+A{II  II + E j  ~j l i~ j l l )  + - 

[from(16)] 

[from(15)]. 

Let us prove (12). Let v E 12 such that v < u. We already know M(v) <_ M(f~), 
by the monotonicity of M. We only need to prove then that M(~)  _< ~. We have, 
for r := .M(g) that, for any initial point u E l;, 

M(~) = & l  Wg(u), 

in particular, for u := g. By definition of g, i.e. of K,  Wr cannot be equal 
to M ( g ) ( =  ko + u) but to I (~)  which in turn is bounded by ~. We get then 
m ( ~ )  = limm--,~ W ~ ( ~ )  _< ~ and this ends the proof. [] 

3.2.2. Convergence rates 

Let us consider a standard algorithm for solving fixed-point problems, which we 
call Algorithm 0: for any given initial point u0, we update the current iteration u 
by the formula u+ := Mu. In next theorem we show that such a sequence of u's 
converges to the solution V of (QVI)  (or equivalently, (4)) and we establish its 
rate of convergence. 

THEOREM 4. Let V be the optimal cost in (4), and let u E 12 be an arbitrary 
initial point. There exist constants C(u) c]K(u) ,  2K(u)[  and (5(u) E]0, 1[ such 
that 

Vm ~ r4 IlM'~(u) - VII _< C(u)(1 - (5(u)) "~ , 

where K(u) and (5(u) have been defined in (9) and (10) respectively. 
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Proof Given u and I f (u) ,  set u_ - - I f ( u )  and ~ = I f (u) .  Let v, w E l; such 
that_u _< v,  w _< ~; there exist O, r E [0, 1] such that 

r (_~-  w)  _< v -  w < 0 ( v -  u) .  

Consider now the convex sum z := ( 1 - O)v + Ou_, we have z = v - O(v - u_) <_ w. 
Apply succesively the results from Theorem 3, namely the concavity of M (.), (11 ) 
and (12). We get 

M(w) >_ ( 1 - O ) M ( v ) + O i ( u )  
= M ( v ) - O ( M ( v ) -  M(u_)) 
> i(v)-O[M(v)-~Sft-(1-( i )(u_u_)]  
>_ M ( v ) - O [ M ( v ) - ( i M ( v ) - ( 1 - 5 ) u ]  
>_ [1-  O(1-  6)]M(v) - ( 1 -  cS)u, 

that is, 

M(v) - M(w) < 0(1 - ~5)(M(v) - u). (17) 

Proceeding in a similar way, but interchanging v and w, we obtain 

r(1 - 5)[_v- M(w)] _< M(v) - M(w) .  (18) 

Putting together (17) and (18) give 

v(1 - 5)[_u - M ( w ) ]  _< M(v)-  M(w) <_ (1 - 5)O[M(v)- u_], 

for any v,  w such that u < v,  w < g. In particular, for w = u, and v = V: there 
exists ~-, 0 and ~ such that 

r ( 1 -  6 ) ( u -  M(u)) <_ V -  M(u) < ( 1 -  5)O(V-  u) ,  

now, by induction, the monotony of M(.)  

r ( 1 -  5)m(g - Mm(u)) < V -  M'~(u) < (1 - r  - u).  

From these last inequalities, we get our bound, with C(u) := 21( max(r,  0). [] 

4. N u m e r i c a l  So lu t ion  

We have characterized V as the maximum subsolution of (QVI).  To solve the 
problem numerically, we approximate it by the maximum subsolution of a discrete 
(QV_r). 



280 R. GONT_~, E. ROFMAN AND C. SAGASTIZPd3AL 

4.1. THE DISCRETIZED PROBLEM 

At each installation i we discretize the stock in Ni points, therefore hi := N~-1 
the stepsize in the direction i and 

N 
f ~ h : = l - I { x i + j h i ,  j = 0 , . . . , N i - 1 }  

i=1 

is the discrete state space. As for the control space, we have a similar discretization, 
x'i --x i �9 �9 , �9 ~, but with Nqi points at each level: Hi := Nq~-I is the corresponding ordenng 

stepsize. We work on W C V, the espace of finite element functions on fth, with 
first degree polynomials as basis functions. 

We assume the probability distribution m j(.) is discrete for each j E ,]: there 
exists a finite family Zj such that for any function ~ E V, f ~ (A~ j )mj (dA~ j )  = 
~z jEZj  ff)( A~zj)mzJ with ~_,zjeZ~ mzj = 1. 

k k Accordingly, given x k := (xl, x2,. . .  , X~v ) an arbitrary meshpoint in f~h, the 
approximation of I(.) is 

1 
(Ih(W))(xk) "-- o< + ~  f ( xk )  

+ }2 + ~ , j e j ) )+  + zx~zj)],~,j 
j=l O~ +A 

for all w E W, and ej the canonical jth vector. When 79j(x k + A~, je j )  ~ f~h, we 
perform a linear interpolation on the jth-coordinate. 

The discretized equation for M (.) is 

.Mh(W)(X k) = __ min { k ( ~  qiei) + w(x k + ~ qi(ei - ei))},  

where I is the predecessor of ordering indexes i involved in the sum and 

N 
q(x ) :: H {m,,,,: = 0,... } ,  

i=1 

with [y] the nearest integer less than or equal to y. Again, when x k + ~ i  qi (ei - e z) 
F/h, we interpolate. Altogether, the discrete problem is 

{ ~--~-S f(xk)+ 

I<j~<N O~ ~ A [ w C P j ( x k  + / k ~ z J e J ) )  + d2 j ( x~  + A ~ z j ) ] m z j  
w ( x  k )  <_ min 

minE, qieQ(~k){k(~ i qiel) + w(x k + ~ i  qi(ei - ei))} 
(qvI~) 
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The problem of finding the maximum subsolution of (QVIh) is equivalent to 
solving a fixed-point problem. We denote this solution by Vh. Indeed, arguing 
exactly as we have done for the continuous case, but working in the subspace }4; 
of V, all the results of w 2.2 can be reproduced. Thus we have a discrete contractive 
operator Mh : }IV ~ W defined by the righthand side in (QVIh). The fixed point 
of Mh can be iteratively computed by the algorithm: 

ALGORITHM 0. 
Step 0 �9 Give v ~ C W and set m = 0. 
Step I �9 Define v~ +1 = Mh(vr~). 
Step 2 : Set m = m + 1, and go to Step 1. 

Moreover, we can prove 

THEOREM 5. Let Vh be the discrete optimal cost in (QVI)h, and let Uh E )4; be 
an arbitrary initial point. There exist constants Ch( Uh ) E]Kh(Uh), 2Kh( Uh )[ and 
(~h(Uh) E]0, 1[ such that 

Vm ~ ~ I l M ~ ( u h ) -  Vhll < Ch(Uh)(1 -- ~h(Uh)) m . [] 

4.2. CONVERGENCE RATES 

We study now the speed of convergence of Vh to V when the discretization step 
tends to zero. We consider a family of associated stopping-time problems ( S T P )  m, 
m = 1, . . . .  Namely, for u ~ C )2 an arbitrary initial point, define a sequence {um )m 
the maximum subsolutions of 

I ( u  ) i f ra  = 1 
u <_ rrfin[I(u),.M(um-1)] otherwise. 

(STP)  m 

Consider also the discrete sequence {u~ }m, the maximum subsolutions of 

< f I h ( u  ~ i f m = l  
Uh - [ min[Ih(u), f l4:um-1 h~ h )] otherwise. 

(STP)~ 

where u ~ is an initial point in 14;. 
We establish a bound for the gap between both sequences. Following the notation 

of (5), r := .Mm- l (u  ~ gives u rh = Mm(u0); similarly, u~ n = M~(u~ 

LEMMA 6. Assume k and V are Lipschitzian with Lipschitz constants Lk and Lv. 
Then 

IIMm(u) - M~(uh)ll _< --+~XLvh ~ + m ( L k  + L v ) h ,  
c~ 

where h := maxi{hi, Hi). 
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Proof. We proceed by induction on m. Given x E ~ h ,  take m = 0, we have 

u~176  = ~ a +  A [u~ + A~J)-U~ + A~J))]mj(dA~j)" 
J 

Since u ~ E 14; is a finite element, for every j there exist #kj such that ~ k  #kj = 
1 and 

uO(pj(~j + A~j)) F_, o = /.tkjUh(Xj). 
k 

Thus we can write 

u~ - u~ = E j  ~ f[u~ + A~j)- Eklzkju~ c~+A 

= E j  ~ f{[u~ + A~j) - EkttkjuO(x~)]mj(dA~j) 

+ Ek#aj[u~ u~ 

The function V is Lipschitz-continuous (this car/be easily proved, since all the 
functions involved: f ,  ffj and k are Lipschitzian) The functions u m are also 
Lipschitz with the same Lipschitz constant, L v. Taking norms, and using II PJ (xJ + 
~ j )  - x~ll _ h for all k and j ,  we obtain 

II u~ - u~ ~ ~ -  AJ (Lvh + II u ~  u~ 
a + A  

that is, 

Ilu o -  uOll _< ~ + ALvh. 
a 

Let us now consider m = 1. Given a meshpoint x E ~h and proceeding as for 
the case m -- O, when ul(x)  = (Ih(u~ get 

ul(x)-  ui(x) <_ Z 
J 

*~JA (Lvh --[-IlU 1 -- ulh]l). a +  

The same bound is obtained for ulh(x) -- ul(x) when ul(x) = (I(u~ We 
have to analyze the remaining possibilities, i.e., either ulh (x) reaches the obstacle 
(./~hU~ or u l (x)  reaches the obstacle (.A/[ (u O))(x). 

In the first case, there exists a discrete control tJh such that 

and 
u~(x) : k(~h) + u~ + ~h) 

~l(x) ~ k(~h) + uO(x +Vh). 
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Writing as before u~ + Uh) = Ek#kuO(x), with E k # k  = 1, we obtain 

u~ + ~,h) - u~ + ~'h) <_ L , h  + ~ff_,#k(u~ ~~ 
k 

Altogether, we conclude u l ( x ) -  Ulh(X) < Lvh + [lu ~  u~ 
In the second case, ulh(x)- ul(x)  and ul(x)  = A/lu~ There exist a control 

u and a discrete control Uh such that I1~' - ~h II -< h and 

ul(x) ~. lg(p) + u~ + !]) and 
ul(x) <_ k(~,h) + u~ + ~'h). 

Adding iu~  + uh) to the first equation we obtain 

ul(x) - -  u l (x )  <: Lkh+ [uO(x+I2 ) - -  uO(x +/]h)] + [uO( x + l/h)-- uO( x'j- Yh)] 

_ (Lk + Lv)h  + Ilu ~  u~ 

In all cases we get 

II u ' - u ~ l  I _< II u ~ 1 7 6  

< A L v h  + (Lk + Lv)h ,  c~ 

and by induction the conclusion ~'ollows. [] 

THEOREM 7. Assume f, { ~gj } j and k are Lipschitz continuous, and (1) holds. 
Let V and Vh solve (QVI) and (QVIh ) respectively. Then, for h small enough, 

I l v -  Whll ~_ o(hlnh) .  
Proof. Clearly 

IIV- Vhll ~ IIV- Mm(u)ll + IIMm(u)- M~(uh)ll + I]M~(uh) -- Wh[I . 

Theorems 4, Lemma 6 and 5 give upper bounds for each term. Namely, for a fixed 
TtZ~ 

[ I v -  Vhll < C ( u ) ( 1 - / f ( u ) )  m + ~ A L v h +  
m(Lk + Lv)h + C(uh)(1 - ~h(Uh)) m (19) 

<_ CA m + ~ i L v h  + m(Lk + Lv)h ,  

with C := C(u) + Ch(Uh) and A := max{1 - (~(u), 1 - ~fh(Uh)}. Since the bound 
holds for any m > O, it holds in particular for the (integer part of) the minimand, 

((Lk+Lv)h~ 
In \ cllnzxl ] ln(#h) [,~] := 

lnA lnA ' 
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Lk+Lv provided h < 1/#, with # := c--ClK~-" 
Plugging this value in (19) we obtain 

IIv- vhll <_ .h  + ~ L . h -  C~,hln(~,h) 
= ~,h(1-Vln(.h))+ ~ L v h  

/ l' a+* 
= C # h l n  e* ,~, 

= o(hlnl ) ,  

(20) 

e l q - ~ L v  
for all h < [] 

C#  

4.3.' ACCELERATED ALGORITHM 

We concentrate now on the algorithmic pattern of resolution. We have to solve 
(QVI)h,  or equivalently, we need the fixed-point of Mh := min[Ih, .Mh]. We 
have frequently observed that Algorithm 0 converges dismally slowly when the 
contraction factor ~ = A / ( a  + A) gets closer to 1. 

To improve computer times we apply a modified algorithm, introduced in [9]. 
This fast algorithm performs standard iterations of Algorithm 0, memorizing at 
each step if a control has been applied and identifying it. Then, if the same control 
has been applied repeatedly, Algorithm 0 quits the standard iteration to solve 
an associated linear system; its solution gives a new (better) starting point for 
Algorithm 0. More formally, 

ALGORITHM 1. 
Step O: Give v ~ E W, Pmax _> 1. Set m = 0, p = 0, 

u ~ = 0 .  
Step 1: Compute 

v~+l(x k) = (Mh(v'~))(xk). If 

(Mh(vr~))(x k) = (.Mh(V~))(x k) = v~(x  k + ~') + k(~), then: 
I f v  = v~, setp = p +  1. 
Otherwise, if v ~ v~, set v = vT and p -- O. 

m+X k h ( X )  for all x k, then Step 2: If v h (x ) = v m k 
stop; else go to Step 3. 

Step 3: If p _< Pmax then set ra = m + 1 and go to Step 1; 
else go to Step 4. 

Step 4: Solve the linear system 

w(x k) = (Mh(w))(x k) = (Mh(~) ) (x  k) = ~(x k + .T) + k(.~).  

Set m = O, v ~ (x k) = w ( x  k) and loop to 1. [] 
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TABLE I. Relative performances 

CPU sec. CPU sec. % Reduction 
r/ Alg. 0 Alg. 1 

0.50 22.33 17.76 23.13 
0.86 70.58 20.00 71.66 
0.91 108.71 21.01 81.68 
0.96 300.73 22.09 92.65 
0.99 991.02 22.43 97.74 
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The convergence of Algorithm 1 can be proved following essentially the proof 
presented in [9] and using the convergence stated above for Algorithm 0 as a 
fundamental tool. 

We finish this section with some comparisons between computing times of 
Algorithm 0 and Algorithm 1, see Table I. 

Note the strong dependence of the acceleration phenomenum on the contraction 
factor ~]: as ~ gets closer to 1, Algorithm 1 performes better when compared to 
Algorithm 0. The results shown have been produced in a VAX 720, for the solution 
of a problem where ca rd ( f2h)  = 1024. 

! 

5. Comparison of Two Systems with Three Hierarc~cal Levels 

5.1. DESCRIPTION OF THE EXAMPLES 

In this section we present some numerical results obtained with the methodology 
proposed, considering two different possibilities for the number of installations. 
More precisely, we have optimized the following systems: 
where A1 = 1 =: L1, A2 = 1 =: L2, A5 = 2 =: L5 represent the rate of 
arriving demands in each installation that is receiving an outer demand. Therefore 
the probability of one arrival at node i is approximately given by AiAt. Demand 
distributions are independent for each node. For our model input of different 
amounts of demand are allowed; these amounts are given by a random variable 
taking the following values: 

D1 = 1.1 (with probability Pl : 0.9) 

D2 = 1.7 (with probability P2 = 0.1) 

This distribution has been assumed identical in nodes 1, 2 and 5. Each node 
has a maximum and a minimum stock, the last one may be negative if we consider 
backlogging (in this case there is a maximum backlogging [~l). We have discretized 
each continuous interval of stock [_zi, :~i] into a set of  Ni points. Each node can 
place an order of an arbitrary amount, provided it can be stocked and supplied. 
The continuous interval of orders [0, s - z_i] is discretized into a set of Nq~ points. 
These values are: 
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o•a ~ 

(z, 1, pl) (z~, p2) 
System A 

Fig. 2. Optimized systems. 
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(z,y p~) (z~, p21 (L s. ]~1 

System B 

Node i  x i "xi N i  Nq~ 

1 -1 3 5 5 

2 -1 3 5 5 

3 0 10 5 5 

4 0 60 3 3 

5 -1 9 5 5 

Clearly, nodes 1, 2, 3 and 4 are the same in both systems: both systems are 
identical, except for the addition of an "extra" node 5 in System B. 

The ordering cost has the following expression: 

k(q) -~. ~ koi -]- kli ql with q = ~ qiei. 
i i 

For our examples we have: 

Node i kOi ]eli 

1 6.0 0.08 

2 0.6 0.08 

3 10 0.01 

4 60 0.005 

5 3 0.04 
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Finally, the stocking cost f has a linear additive structure. Each installation 
varies its cost according to the following criteria: 

If S E [0, 2~], then f i (S)  = f + . S  represents the real stocking cost. 
If S E [x~, 0] then f i (S)  = f~-.S measures the cost related to the backlogging 

phenomenon. 

When the entered demand "D"  is so big that xi reaches _x i, the rupture of the 
maximum backlogging has a cost equal to ~i (xi - D - x__ i), the system stays at x i 
(the demand accepted will just be xi - x_.0. 

The data used for the example are: 

Node i f +  I f ( I  ~ 

1 0.1 80 45 

2 0.1 80 45 

3 0.007 - - 

4 0.0008 - - 

5 0.1 80 45 

REMARK. Nodes 3 and 4 being "interior", do not have values for negative stocks, 
since they do not operate with backlogging. 

We have obtained by simulation of the system operation, the evolution of stocks, 
the orders placed by each installation, as well as the demands received. We have 
assumed demands are the same for both examples. 

5.2. SOME REMARKS CONCERNING COOPERATION 

5.2.1. Node I behaviour 

For our comparisons we have performed the global optimization for five different 
systems, all having installation 1 as a basic node. Thus we have started with a 
one installation system (namely node 1) and gone on adding a new node at each 
time: 

Clearly, each centralized optimal policy will have a different strategy for node 
1. The table at the bottom of Figure 3 shows how the addition of a new node 
makes node 1 adopt policies involving individual higher costs. Such augmentations 
represent the amount of cooperation node 1 is offering to the system in order to 
achieve an optimal global cost. Let us point out that a decentralized approach would 
allow node 1 to keep the lowest cost (22.44). In Section 5.2.3 we will show the 
negative consequences of this selfish action. 
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4 
EX. 1 

22.44 

Fig. 3. 

EX. 4 

24.96 
11% 

/ / 

EX. 5 

27.83 
24% 

EX. 2 EX. 3 

22.48 22.66 
0.2% 1% 

OperatingcostofNodel. 

J 

Ex. 1 Ex. 2 (Sys.A) Ex. 3 
53.76 60.14 68.76 
-- 11.8% 28% 

Fig. 4. Operating cost of subsystem (1-2-3). 

(SM..B) 

5.2.2. Subsystem (1-2-3) 

As we have done with one node, we analyze the evolution of the operating costs 
of a subsystems when more nodes are added. Figure 4 shows increasing costs of 
subsystem (1-2-3) due to the successive introduction of installations 4 (denoted by 
System A) and 5 (System B). 
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5.2.3. Subsystems "selfishness" versus cooperation 

Let us consider subsystem (1-2-3). We can show that centralized optimization 
produces an optimal global cost of 139.09 for System B. This centralized strategy 
imposes a cost equal to 68.76 for the subsystem (1-2-3), as shown in Figure 4. 

Assume now subsystem (1-2-3) conditions the entrance of node 5 to the system 
because of the higher costs due to such incorporation. This condition could be to 
give (1-2-3) a "priority" for being supplied. In this way its privilege over node 5 
would let (1-2-3) get at least a cost closer to its former one (in System A, i.e. 60.14), 
even when belonging to System B. Table II shows how (1-2-3) gets decreasing costs 
as it asks for more and more privileges. But, on the other hand, these "priorities" 
make System B increase its global cost with an amount in excess of the individual 
gain obtained by (1-2-3). System B increasing costs are originated by node 5's 
rejected demand. 

In summary, if (1-2-3) intends to conserve its former cost (the one achieved in 
System A, 60.14) then System B has to increase its global cost by 15 %. 

Suppose now (1-2-3) refuses node 5 incorporation. The global cost of System 
A results from the addition of (1-2-3) cost and node 4 cost (60.14 and 18.58 
respectively). In order to let node 5 operate, it should put its orders to a new "extra" 
node 4", with identical characteristics as node 4. We would get then an auxiliary 
system (4*-5) which operates under global optimization with a cost of 29.37 for 
node 5 and 38.13 for 4*. Figure 5 shows the pernicious effect of  considering two 
separated systems: System A and system (4*-5). Total costs are higher than System 
B global cost, although (1-2-3) and 5 both obtain better costs when operating 
separatedly. 

For this case a centralized optimization (System B operating costs) results in: 

(1) Subsystem (1-2-3) pays a cooperative cost of 

68.76 - 60.14 -- 8.62 

(2) Node 5 pays a cooperative cost of 

30.77 - 29.37 -- 1.44 

The total cooperative cost becomes 10.02 

TABLE II. (1-2-3) decreasing costs 

Operating costs of Operating costs of 
subysystem (1-2-3) System B 

inB 

(no privileges) 68.76 139.09 
62.50 156.61 
60.20 160.28 
59.60 162.30 
59.40 162.68 
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b 5 . ;  : 1 1 ! 
6 7 . 5 0  
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Fig. 5. Comparison of  costs. 

This cooperation allows the existence of  just one node "4" at the maximum 
level of  hierarchy. This fact reduces global cost in node 4 by 

(18.58 + 38.13) - 39.56 = 17.13 
Hence in System B we have an overall reduction of 

17.13 - 10.02 = 7.11 

That  is, we get a reduction of  approximatedly 5 % over the cost obtained when 
operating in a decentralized way (System A + (4*-5)). 
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6. Concluding Remarks 

As we already said, global controls give optimal policies for a system considered as 
a whole. However, global optimization of inventory systems is frequently put aside 
in reallife applications, due to the high dimensionality of the discrete problems 
associated. Such is the case if we use Algorithm 0, an extension to the stochastic 
framework of the proposal of [8]. This extension had only been applied to a (simple) 
serial chain in [12], because of its poor performances. Indeed, Table I shows what 
happens when trying to use Algorithm 0 with an arborescent system; computer 
times become so high that the global approach become useless. In [9] we proposed 
an algorithm that accelerates Algorithm 0 and can be applied to a wide class 
of discrete Hamilton-Jacobi-Belhnan equations. With this new algorithm, global 
optimization can be extended to more complex systems. We have shown in w 5 how 
a global coordination results in lower total costs. We think that, even if real-life 
problems are sometimes exceedingly complex from a numerical point of view, 
the use of Algorithm 1 combined with aggregation techniques could give a good 
compromise to obtain suboptimal solutions not too far from the optimal (global) 
cost. 
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